A Using Machine Learning to Improve Automatic Vectorization

نویسندگان

  • Kevin Stock
  • Louis-Noël Pouchet
  • P. Sadayappan
چکیده

Automatic vectorization is critical to enhancing performance of compute-intensive programs on modern processors. However, there is much room for improvement over the auto-vectorization capabilities of current production compilers, through careful vector-code synthesis that utilizes a variety of loop transformations (e.g. unroll-and-jam, interchange, etc.). As the set of transformations considered is increased, the selection of the most effective combination of transformations becomes a significant challenge: currently used cost-models in vectorizing compilers are often unable to identify the best choices. In this paper, we address this problem using machine learning models to predict the performance of SIMD codes. In contrast to existing approaches that have used high-level features of the program, we develop machine learning models based on features extracted from the generated assembly code, The models are trained off-line on a number of benchmarks, and used at compile-time to discriminate between numerous possible vectorized variants generated from the input code. We demonstrate the effectiveness of the machine learning model by using it to guide automatic vectorization on a variety of tensor contraction kernels, with improvements ranging from 2× to 8× over Intel ICC’s auto-vectorized code. We also evaluate the effectiveness of the model on a number of stencil computations and show good improvement over auto-vectorized code.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media

Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...

متن کامل

Explain the theoretical and practical model of automatic facade design intelligence in the process of implementing the rules and regulations of facade design and drawing

Artificial intelligence has been trying for decades to create systems with human capabilities, including human-like learning; Therefore, the purpose of this study is to discover how to use this field in the process of learning facade design, specifically learning the rules and standards and national regulations related to the design of facades of residential buildings by machine with a machine ...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011